

Jets in the first DØ RunII data

APS Meeting, Albuquerque: April 19-23, 2002

Alexander Kupčo

Institute of Physics, Academy of Sciences of the Czech Republic Center for Particle Physics, Prague

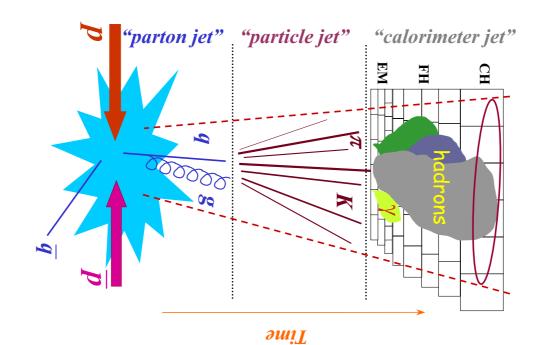
calorimeter jet

- calorimeter main tool for jet measurement
- jet is collection of towers within a given cone R

$$R = \sqrt{\Delta^2 \varphi + \Delta^2 \eta}$$

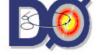
- φ is the azimuthal angle
- pseudorapidity η is related to the polar angle ϑ

$$\eta = -\log \tan \left(artheta /2
ight)$$

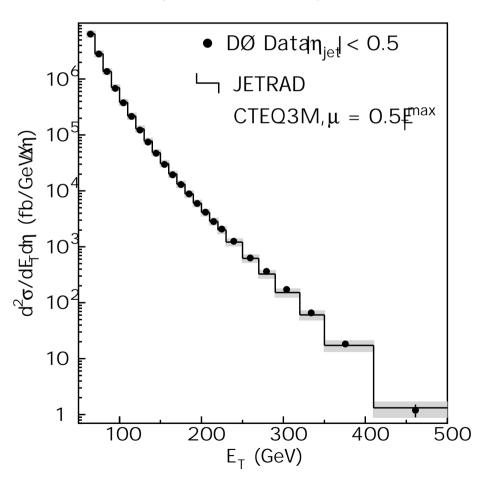

- cone direction - maximises total E_T of the jet

particle jet

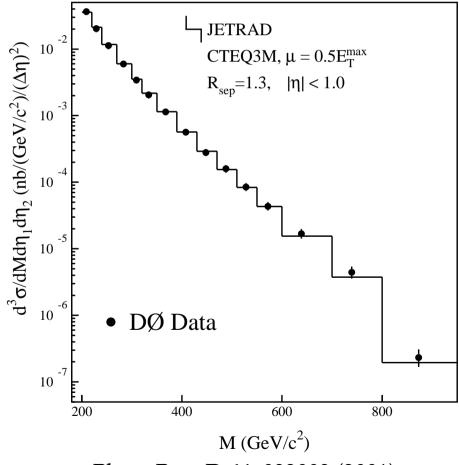
- after hadronization
- a spread of particles running roughly in the same direction as the parton


parton jet

parton hard scattering and parton showers described by pQCD



Jets in RunI data


 \triangleright basic jet distributions (like inclusive jet p_T cross section or dijet mass cross section) are well described by pQCD

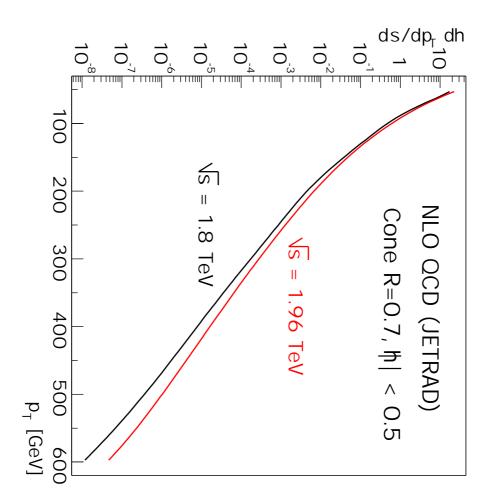
RunI jet inclusive spectrum

Phys. Rev. D 64, 032003 (2001)

RunI dijet mass spectrum

Phys. Rev. D 64, 032003 (2001)

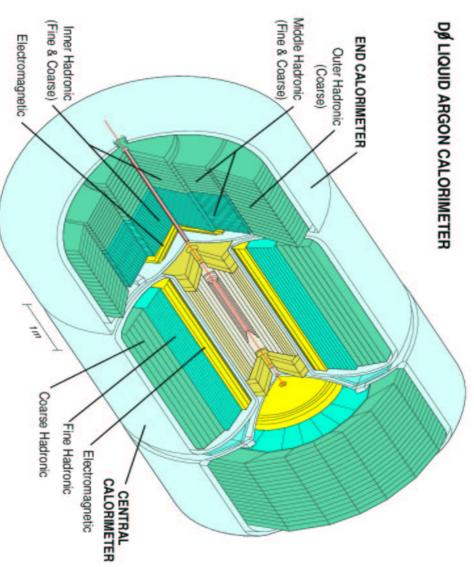
High pT jets in RunII


slightly higher CMS energy

- cross section is more than 2 times larger for jets with $p_T > 400\,\mathrm{GeV}$ at 1.96 TeV than at 1.8 TeV

higher luminosity

- $109 \,\mathrm{pb}^{-1}$ in RunI
- $expect 2 fb^{-1}$ in RunIIa
- ▶ higher statistics for high p_T jets
- improve knowledge of proton structure at large x, especially the gluon distribution
- searches for new physics (quark compositeness, excited quarks, Z', W', extra dimensions, ...)

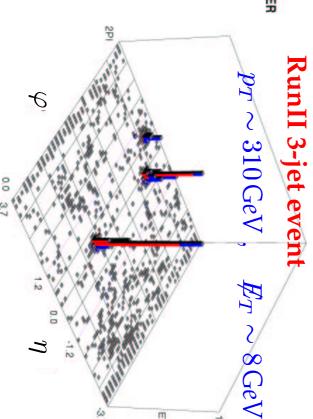

jet inclusive p_T spectrum

Calorimeter

Runll upgrade

- shorter time between bunch crossings (396 ns)
- faster trigger and readout electronics

▶ 100% commissioned


- only 50 bad channels out of 55000

- uniform and hermetic
- coverage up to $|\eta| < 4.2$
- compensating $(e/\pi \sim 1)$
- fine segmentation

$$-\Delta\eta\times\Delta\varphi=0.1\times0.1$$

RunI - excellent performance
good energy resolution

$$\sigma_E^{EM}/E \approx 15\%/\sqrt{E}$$
 $\sigma_E^{HAD}/E \approx 50\%/\sqrt{E}$

Data sample

- ▷ DØ RunII data taken during February and March 2002
- $par{p}$ collisions at $\sqrt{s}=1.96\, ext{TeV}$, integrated luminosity is $\mathcal{L}=1.9\, ext{pb}^{-1}$
- \triangleright all results are for jets with cone size R=0.7 in the central calorimeter region $(|\eta| < 0.5)$

Selection criteria

- event selection
- cut on missing E_T , $E_T < 0.7 p_T^{jet1}$
- cut on primary vertex position, $|z_{vtx}| < 50$ cm
- cut on total energy deposited in calorimeter, $E_{cal} < 2 \, {
 m TeV}$
- jet selection criteria − based on EMF, CHF, HotF, n90

Current corrections

- jet energy scale correction
- correction for vertex selection cut
- no other correction factors applied (unsmearing, trigger efficiencies, jet selection efficiencies,

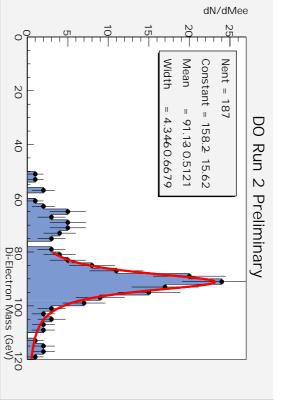
Jet energy scale

 correction of the jet energy measured on the detector level to the jet energy on the particle level

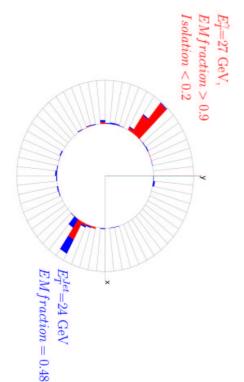
$$E_{ptcl}^{jet} = rac{E_{det}^{fet} - O}{R_{jet} S}$$

Offset, O

- energy not associated with the hard interaction (U noise, pile-up, underlying event, additional $p\bar{p}$ interaction)


Response, K_{jet}

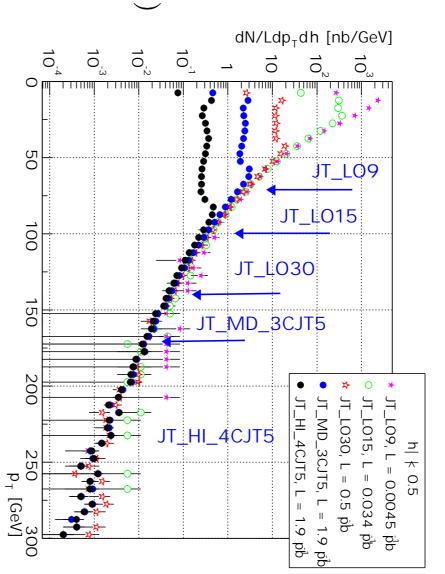
- calorimeter response to the jet
- . EM part calibrated on Z
 ightarrow ee mass peak
- measured from E_T balance in $\gamma+{
 m jet}$ events


Showering, S

- losses due to showering the energy in the calorimeter out of the jet cone
- preliminary jet energy scale correction
- systematic error about 10% on jet energy

$Z \rightarrow e^+e^-$

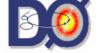
photon + jet



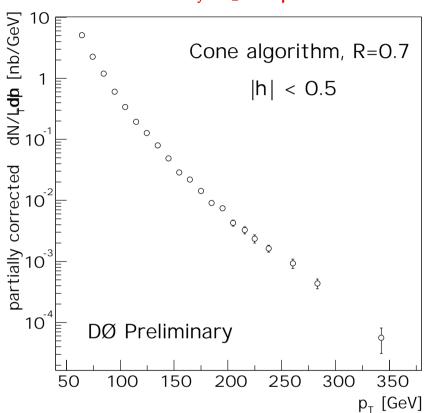
Jet triggers

Trigger system is essential for measurement of rare processes

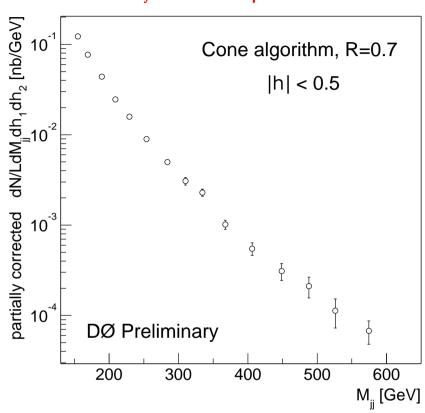
- allows to select the desired
- control of too frequent processes
- high luminosity means high bunch crossing rate (2.5 MHz)
- able to write events to tape with rate 50 Hz


Hardware triggers

- triggering on calorimeter towers
- fast trigger readout
- current coverage up to $|\eta| < 0.8$
- multi tower triggers


Software triggers

- PC Linux farm
- run simple and fast jet algorithm on the precision readout


Results

Inclusive jet p_T spectrum

Dijet mass spectrum

- > only statistical errors
- \triangleright integrated luminosity $\mathcal{L} = 1.9 \,\mathrm{pb}^{-1}$ (uncertainty about 10%)
- > preliminary jet energy scale correction
 - 30-50% systematic error in cross section
- > not fully corrected (unsmearing, selection cuts efficiencies, trigger efficiencies, ...)

Summary

- preliminary results on
- jet inclusive p_T spectrum (60 GeV $< p_T < 360$ GeV)
- dijet mass spectrum (150 GeV $< M_{jj} < 650$ GeV)
- measured in the first DØ RunII data were presented
- although not fully corrected (and hence not comparable to theory), they
- DØ detector operates properly after the upgrade
- RunII jet measurements are well underway
- looking forward to more data